p-adic metric

p-adic metric
мат.
p-адическая метрика

English-Russian scientific dictionary. 2008.

Игры ⚽ Нужно решить контрольную?

Смотреть что такое "p-adic metric" в других словарях:

  • p-adic number — In mathematics, and chiefly number theory, the p adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a way different from the extension of the rational number system to the real and complex number… …   Wikipedia

  • P-adic number — In mathematics, the p adic number systems were first described by Kurt Hensel in 1897 [cite journal | last = Hensel | first = Kurt | title = Über eine neue Begründung der Theorie der algebraischen Zahlen | journal =… …   Wikipedia

  • Complete metric space — Cauchy completion redirects here. For the use in category theory, see Karoubi envelope. In mathematical analysis, a metric space M is called complete (or Cauchy) if every Cauchy sequence of points in M has a limit that is also in M or,… …   Wikipedia

  • P-adic quantum mechanics — One may compute the energy levels for a potential well like this one.[note 1] P adic quantum mechanics is a relatively recent approach to understanding the nature of fundamental physics. It is the application of p adic analysis to quantum… …   Wikipedia

  • Cantor set — In mathematics, the Cantor set, introduced by German mathematician Georg Cantor in 1883 [Georg Cantor (1883) Über unendliche, lineare Punktmannigfaltigkeiten V [On infinite, linear point manifolds (sets)] , Mathematische Annalen , vol. 21, pages… …   Wikipedia

  • Ultrametric space — In mathematics, an ultrametric space is a special kind of metric space in which the triangle inequality is replaced with d(x, z) ≤ max{d(x, y), d(y, z)}. Sometimes the associated metric is also called a non Archimedean metric or super metric.… …   Wikipedia

  • Subshift of finite type — In mathematics, subshifts of finite type are used to model dynamical systems, and in particular are the objects of study in symbolic dynamics and ergodic theory. They also describe the set of all possible sequences executed by a finite state… …   Wikipedia

  • Archimedean property — In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some ordered or normed groups, fields, and other algebraic structures. Roughly speaking, it is… …   Wikipedia

  • Two's complement — The two s complement of a binary number is defined as the value obtained by subtracting the number from a large power of two (specifically, from 2 N for an N bit two s complement).A two s complement system or two s complement arithmetic is a… …   Wikipedia

  • Tensor product of fields — In abstract algebra, the theory of fields lacks a direct product: the direct product of two fields, considered as a ring is never itself a field. On the other hand it is often required to join two fields K and L, either in cases where K and L are …   Wikipedia

  • Thue–Siegel–Roth theorem — In mathematics, the Thue–Siegel–Roth theorem, also known simply as Roth s theorem, is a foundational result in diophantine approximation to algebraic numbers. It is of a qualitative type, stating that a given algebraic number α may not have too… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»